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EXECUTIVE SUMMARY
In this work, we present a method to estimate the acoustic source gain of targets in a shallow-water

environment, using passive sonar. This is accomplished by using a two-step approach. The first step is to
localize the target, which is accomplished by using the Sparsity-Cognizant Source Location Mapping
(scSLM) algorithm, developed at the Space and Naval Warfare Systems Center Pacific. This algorithm has
been shown to be robust to environmental mismatch when localizing multiple targets. Moreover, it yields
an estimate of the source levels. Unfortunately, the bias in these estimates can be large depending on the
values of the algorithm’s tuning parameters. The second step of our approach is introduced to decrease the
bias in the acoustic source gain estimates. By using the locations obtained by scSLM and the
environmental model, we develop an estimator that yields improved acoustic source gain estimates.
Numerical tests are used to illustrate the quality of the acoustic source gain estimates for multiple
broadband targets in a shallow-water environment.
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1. INTRODUCTION
Localization of an underwater target and then estimation of its acoustic gain using passive sonar is a

difficult task. Localization and estimation in shallow-water scenarios is particularly challenging due to the
complexities of acoustic propagation through this environment. For low-frequency signals, acoustic
propagation in shallow water is characterized by multipath due to the multiple interactions that they sustain
with the sea surface and sea floor, by refraction due to a depth-dependent sound speed profile, and by the
spatio-temporal variability of environmental parameters. Shipping lanes and marine life also contribute
noise that masks/interferes with the acoustic signals of interest and leads to low signal-to-noise ratios
(SNRs) at the hydrophone array [1].

Various matched-field processing (MFP) algorithms are useful in localization of underwater acoustic
sources. MFP assumes that sources are located in a predefined area and uses an acoustic propagation model
to predict the pressure fields, known as replicas, at the hydrophone array for a grid of locations. These
replicas are then ”matched” to the hydrophone measurements to produce an ambiguity surface, which
summarizes the acoustic power estimates across the grid. Then localization is achieved by choosing the
largest peaks on the ambiguity surface and assigning them to source locations. Classical MFP suffers from
large sidelobes, which makes localization of multiple sources difficult and can be sensitive to
environmental mismatch [2].

Different from MFP, Sparsity-Cognizant Source Location Mapping (scSLM) casts the localization
problem as a group-Lasso regression problem. It has been shown that location estimates obtained via
scSLM are more accurate than the ones obtained by classical MFP algorithms, such as Bartlett and Capon
[3]. It has also been shown that they are robust to environmental mismatch [3]. This work uses the scSLM
algorithm to localize the targets and estimate their acoustic gain. It is then shown that the acoustic source
gain estimates provided by the scSLM’s output do not accurately estimate the true source gain. A two-step
approach, using scSLM for the localization and a least-squares estimator for obtaining the source gains
yields improved source gain estimates. This method differs from ones found in literature, that tend to use a
simplified passive wave equation to estimate the acoustic source-levels of ships and marine life [4–6]. One
of the main problems with using a simplified passive wave equation in a shallow-water environment is the
fact that it does not account for multipath or spatio-temporal variability of environmental parameters.

Notation : upper (lower) boldface letters are used for matrices (column vectors);(·)’((·)†) denotes
matrix and vector transpose (conjugate transpose);[·]n,m([·]n) the (n,m)-entry of a matrix (n-entry of a

vector); ‖y‖q =
(∑N

n=1 |yn|q
)1/q
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2. PROBLEM FORMULATION
An array of N hydrophones with known and arbitrary geometry is used to capture T discrete-time

acoustic measurements {y(t)}Tt=1 from K sources. Let yn(t) := [y(t)]n correspond to the acoustic
measurements gathered by the n-th hydrophone at time t. With hn(t; rk) being the discrete-time impulse
response of the channel at time t and unknown source location rk ∈ Rd, where d ∈ {2, 3}, yn(t) is
modeled as

yn(t) =

K∑
k=1

(hn ∗ sk ) (t; rk) + εn(t), n = 1, ..., N (1)

where ∗ denotes the convolution operator, sk (t) the acoustic signature for the k-th source and εn(t) is a
zero-mean random measurement noise.

Although it is possible to work directly in the time domain, the computational complexity required to do
so, can be excessive [7]. Instead, the problem is cast in the frequency domain. First, {y(t)}Tt=1 is
partitioned into M blocks and transformed to the frequency domain via the discrete Fourier transform
(DFT). Per frequency wf , let ym,f ∈ CN and sk,f ∈ C denote the DFT coefficient vector for the m-th
measurement block and the acoustic gain DFT coefficient for the n-th source, respectively. Then,
{ym,f}Mm=1 is modeled as

ym,f =
K∑
k=1

sk,f (pk,f + vk,f ) + εm,f , m = 1, ...,M (2)

where εm,f denotes the Fourier coefficients at wf corresponding to the noise in the m-th block; pk,f ∈ CN

the wf model-predicted Fourier coefficients at the array for a source located at rk, which will be referred to
as replicas; and vk,f ∈ CN an unknown perturbation vector effecting pk,f , which helps account for the
mismatch between the acoustic propagation model and the true propagation environment.

Let Yf := [y1,f , ...,yM,f ] comprise all M Fourier coefficients vectors at wf . Given an underwater
propagation model, Fourier coefficients {Yf}Ff=1 for F frequencies {wf}Ff=1 and the number of sources

K. The localization process seeks to find the positions {rk}Kk=1 while still being robust to unknown
perturbations {{vk,f}Kk=1}

F
f=1. Even if the adopted underwater propagation model were to exactly

characterize the propagation environment, solving for {rk}Kk=1 is difficult because it entails a nonlinear
regression problem. A closed-form expression relating rk to pk,f is unavailable since in most cases of
interest, finding pk,f entails solving the wave equation for specific boundary conditions given by the
environment model [1].

2.1 LOCALIZATION

The scSLM algorithm circumvents some of the computational challenges posed by the nonlinear
relationship between rk and {pk,f}Ff=1, by constructing a grid G :=

{
rg ∈ Rd

}G
g=1

that spans the region of
interest. Let pg,f denote the replica vector at frequency wf for a source located at rg. For a given wf ,
Pf := [p1,f , ...,pG,f ] ∈ CN×G comprises all normalized replicas corresponding to G where
‖pg,f‖2 = 1,∀g. Each ym,f is now modeled as

ym,f =

G∑
g=1

sg,f (pg,f + vg,f ) + εm,f , ∀m, f (3)

where vg,f ∈ CN denotes the unknown perturbation vector affecting pg,f . Since K� G, most of the
{sg,f}’s are expected to be zero.

2



Let sf := [s1,f , ..., sG,f ]′ ∈ CG denote the complex-valued vector of regression coefficients at wf ,
S := [s1, ..., sF ] ∈ CG×F denote the complex-valued matrix comprising all regression coefficients,
Vf := [v1,f , ...,vG,F ] ∈ CN×G a complex-valued matrix comprising all perturbation vectors. The scSLM
algorithm uses an `1/`q regularizer, also known as a group-Lasso regularizer, to find the optimal S while
being robust to environmental mismatch. Equation 3 can be cast as a convex optimization problem that
forces sparsity and coherence, in the source locations across frequencies, see [8, 9] for a detailed
description. In this work coherence refers to a common support across source localization maps at different
frequencies, which is reasonable to exploit since it is assumed the source locations are immutable across
frequencies. The scSLM algorithm solves the following minimization problem:

min
S∈CG×F

1

2M

F∑
f=1

E
∥∥∥Yf − (Pf + Vf ) sf1

′
M

∥∥∥2 + µ
G∑

g=1

‖ςg‖q (4)

where ςg is defined as the g-th row vector of S, ςg := [sg,1, ..., sg,F ]. µ > 0 is a tuning parameter
controlling the sparsity level on S and q ∈ (1,∞]. The scSLM algorithm assumes that the columns of Vf

are zero-mean random vectors with covariance matrix Σf ∈ CG×G and independent across Vf ’s.

By choosing µ, one can construct a map with K nonzero locations that correspond to the source
locations [10].

2.2 SOURCE LEVEL ESTIMATION

One should note that Equation (4) gives both an estimate of the source location and the acoustic gains.
However, since sg,f was calculated using normalized replicas the estimate does not correspond to the true
acoustic gain, but rather it corresponds to the acoustic source gain decreased by the acoustic propagation
loss from the source to array. To compute the source gain estimate, we need to remove the normalization of
the replica that was used to obtain sg,f . Letting {g∗k}Kk=1 be the grid points that correspond to the K top
ranked intensities from the scSLM algorithm, we obtain the following acoustic gain estimates

ŝg∗k,f =
sg∗k,f∥∥∥pg∗k,f

∥∥∥
2

. (5)

One caveat with this method of estimating the source level, ŝg∗k,f is that it yields biased estimates since it is
based on the group-Lasso regularizer [8].

To circumvent this problem, we propose to use the estimated location of the source g∗k, but will then use
the least-squares estimator to find the source gains. Since the scSLM algorithm guarantees a common
support and each frequency has an independent source level, we can obtain the source gains for each
frequency separately. Letting PK

f := [pg∗1 ,f
, ...,pg∗K ,f ] and sKf := [sg∗1 ,f , ..., sg∗K ,f ]′, we postulate the

following estimator for the source levels, s̃Kf :

s̃Kf := arg min
sKf ∈CK×1

∥∥yf −PK
f sKf

∥∥2
2
, (6)

which has the following closed form solution:

s̃f =
(
PK

f
†
PK

f

)−1 (
PK

f
†)

yf . (7)

Note that if there is only one source present, Equation (7) simplifies to the following form:

s̃f =
pg∗1 ,f

†yf∥∥pg∗1 ,f

∥∥2
2

. (8)
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3. NUMERICAL TESTS
This section serves to illustrate the estimation quality of the acoustic source gains in a broadband

multi-source environment, using passive sonar. Numerical tests on synthetic data sets were conducted to
illustrate the performance of the proposed algorithm.

A shallow-water environment, as depicted in Figure 1a, was created. This environment contains a
vertical line hydrophone array, which consists of N = 25 elements that span the entire water column of
100 m. A grid of 10,251 locations spanning a range 0 to 10 km and depths 0 to 100 m was used. This gives
a range and depth spacing of 50 and 2 m, respectively. All replicas for this environment were calculated
using KRAKEN [11].

We first consider a single broadband source and the following five frequencies: 65, 150, 220, 300, and
350 Hz. These five frequencies correspond to the following source gains: 95, 97, 100, 97, and 95 dB,
respectively (Figure 1b). We then introduce additive white Gaussian noise to the replicas to obtain a
predefined average SNR across the frequencies. The average SNR was calculated at the closest point of
approach (CPA) and will vary according to the targets distance (Figure 2).

Next we simulate a two source case. Both sources are emitting at the same five frequencies and same
acoustic gains: 65, 150, 220, 300, and 350 Hz, and 95, 97, 100, 97, and 95 dB, respectively. The difference
in the two sources are the CPA and depth values as can be seen in Figure 3.

For all tests, we considered a correct localization to be a square of ±1 around the true location, as
shown in Figure 4. We also do not allow multiple targets to localize within the same area of localization.
For the following tests, scSLM with q = 2 was used.

3.1 RESULTS

The following results show the average estimates over 50 Monte Carlo runs. scSLM parameters α and λ
were set to 0.005 and 0.85 respectively.

3.1.1 ONE SOURCE

For the single source case, the average SNR at CPA was set to 3 dB. The resulting SNR’s per frequency
is shown in Figure 2. Figure 6 shows that the scSLM acoustic source gain estimations are not an accurate
portrayal of the true signal strengths. Again, this is due to the innate bias of scSLM, that stems from its
reliance on the group-Lasso regularizer. Since this bias occurs in all the scSLM source level estimations,
we will no longer show these results. When first localizing the sources based on scSLM and then using the
least-squares estimator from Equation (6) to estimate the source levels, we are able to better approximate
the true acoustic gain (Figure 7). Note that as the SNR drops, localization becomes more difficult. Hence,
estimating the source acoustic gains also becomes more difficult. This is shown in the larger error-bars in
Figures 6 and 7.
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Figure 7. Single Source: Acoustic source gain estimates obtained via least-squares. The stem plots
represent the percentage of correct localizations estimated via 50 Monte Carlo runs. The source gain plot
shows the average gain magnitude in dB, 20 log10( ¯| ˜ |sf ), along with its standard deviation. The average
error plot corresponds to ef = 20 log10(
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source gain from the Monte Carlo runs is sf , ¯̃sf , respectively.
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3.1.2 TWO SOURCES

In the two-source simulation, we increased the average SNR at CPA to 8 dB (Figure 9). Target 1 will be
defined as the source at the depth of 52 m, while target 2 will be the source at 72 m (Figure 3). The results
of the two-source Monte Carlo simulation are shown in Figures 10 and 11. These figures illustrate that
correct localizations on multiple targets can be difficult, even at higher SNRs (compared with the
single-source case). These figures also show that target 1 was localized more often than target 2 and that
the error-bars on target 1 at each frequency do not vary as much as target 2. The smaller variations are
likely caused by the incorrect localization providing fallacious source gain estimates. As the targets
approach CPA, the acoustic gains were closer to the expected values, along with having lower variances.
This is most likely due to the increase in localization percentages and higher SNRs.
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Figure 10. Two Sources: Target 1 acoustic source gain estimates obtained via least-squares. The stem
plots represent the percentage of correct localizations estimated via 50 Monte Carlo runs. The source gain
plot shows the average gain magnitude in dB, 20 log10( ¯| ˜ |sf ), along with its standard deviation. The average
error plot corresponds to ef = 20 log10(

∣∣|sf | − ¯| ˜ |sf
∣∣). The true source gain, at frequency f , and the average

source gain from the Monte Carlo runs is sf , ¯̃sf , respectively.
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(b) Frequency = 150 Hz
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(c) Frequency = 220 Hz

0.0
0.2
0.4
0.6
0.8
1.0

%
 L
oc
al
iz
ed

Time
60

65

70

75

80

85

90

95

100

|A
co
us
tic
 S
ou
rc
e 
G
ai
n|
 (d

B)
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Figure 11. Two Sources: Target 2 acoustic source gain estimates obtained via least-squares. The stem
plots represent the percentage of correct localizations estimated via 50 Monte Carlo runs. The source gain
plot shows the average gain magnitude in dB, 20 log10( ¯| ˜ |sf ), along with its standard deviation. The average
error plot corresponds to ef = 20 log10(

∣∣|sf | − ¯| ˜ |sf
∣∣). The true source gain, at frequency f , and the average

source gain from the Monte Carlo runs is sf , ¯̃sf , respectively.
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4. CONCLUSIONS
This work focused on estimating the acoustic source gains of broadband sources in a shallow-water

environment. The results show that accurate acoustic source gain estimation is possible if the sources were
correctly localized. Knowledge about the environment was a fundamental enabler for the acoustic source
gain estimation. When dealing with multiple sources the source gain estimation does not perform as well,
but if localization was achieved, then it is still able to give accurate results at higher SNRs. Future research
will explore how this algorithm performs on real data set(s) and in the presence of environmental
uncertainty.
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